离语

semaphore

首页 >> 离语 >> 离语最新章节(目录)
大家在看丁见月历险记 锦绣寒门 将军,夫人说要回家种田 cp跑了我该怎么办 邪凰狂妃:魔尊,蚀骨绝宠!(绝色至尊:邪王,放肆疼!) 大唐验尸官 倾城医妃:冷情王爷请入榻 龙魂兵王 军痞农媳:山里汉子,宠炸天! 穿越之嫡女谋官 
离语 semaphore - 离语全文阅读 - 离语txt下载 - 离语最新章节 - 好看的古言小说

第305章 抹茶

上一页书 页下一章阅读记录

因此,出现了一个重要的研究交叉点,即检索多模态知识以增强生成模型。它为解决当前面临的事实性、推理、可解释性和鲁棒性等挑战提供了一个前景广阔的解决方案。由于这一领域刚刚起步,在将这些方法作为一个特定组别进行识别、将它们的内在联系可视化、将它们的方法论联系起来以及概述它们的应用方面缺乏统一的认识。因此,我们对多模态检索增强生成(RAG)的最新进展进行了调查。具体来说,我们将当前的研究分为不同的模式,包括图像、代码、结构化知识、音频和视频。对于每种模式,我们都会使用相关关键词系统地搜索 ACL 文集和谷歌学术,并进行人工筛选,以确定其与调查的相关性。因此,我们收集了 146 篇论文进行详细分析。附录 A.1此外,我们还提供了搜索详情、统计数据和趋势分析图,这表明自大规模通用模型出现以来,多模态 RAG 论文的发展确实非常迅速。在每种模式中,我们将相关论文按照不同的应用进行分组讨论。我们希望通过深入调查,帮助研究人员认识到多模态 RAG 的重要性。我们的贡献在于,我们发现了以不同形式纳入知识的方法,并鼓励对现有技术进行调整和改进,以适应快速发展的法学硕士领域。

摘要:随着大型语言模型(LLMs)的普及,使用多模态增强 LLMs 的生成能力成为一个重要趋势,这使得 LLMs 能够更好地与世界交互。然而,对于在哪个阶段以及如何结合不同的模式,目前还缺乏统一的认识。在本调查报告中,我们回顾了通过检索多模态知识来辅助和增强生成模型的方法,这些知识的格式包括图像、代码、表格、图表和音频。这些方法为解决诸如事实性、推理、可解释性和鲁棒性等重要问题提供了有前景的解决方案。通过深入评述,本调查报告有望让学者们更深入地了解这些方法的应用,并鼓励他们调整现有技术,以适应快速发展的

喜欢离语请大家收藏:(m.ctshuwu.com)离语畅听书屋更新速度全网最快。

上一页目 录下一章存书签
站内强推豪门枭士 影视世界梦游记 世子无双 修仙小书生 绝色生骄 快穿:万人迷炮灰又把剧情整崩了 万古之王 快穿:年代文里的炮灰觉醒了 四合院:阎解旷的潇洒人生 神秘世界:开局睡觉就会死 我在末世签到生存 王者归都 大明:开局气疯朱元璋,死不登基 柯南之另一个我 仙帝重生:开局谋权称帝! 全民大航海,我能无限合成 重生都市仙帝之九世归一 诸天:从被强制绑定开始 一剑神魔 妖女哪里逃 
经典收藏冲喜后,世子追妻火葬场了 天才少年可惜一早被人哄走啦 分家就分家,我有系统我怕谁? 空间之农家女是团宠 盛姝 甜妻在上:大叔乖乖宠我 战神王爷死皮赖脸爱上清冷王妃 我的五个帅爹都是炫女狂魔 娘娘是个娇气包,得宠着! 重生嫡母杀疯了,创飞全家白眼狼 农门娇俏小娘子 大反派他摆烂了十年 渣王想纳妾,这个王妃我不当了 被前夫坑进兽世,我集邮怎么了 穿越后世子宠妻无度 农女福妻当自强 我绑定了神医系统 病娇权相的笼中雀 惊!皇上男宠利用丞相之子上位 帝心不在 
最近更新我是元九,有何不可! 穿越成奶娃,开局便会仙法 退婚嫁摄政王,财运旺惊艳全京城 被嫡姐逼做通房后 小师妹你个老六 太子疯爱,娘娘被日日惩罚 惨死重生后,成了反派权臣掌上娇 夫人新婚入府,绝色督公日日沦陷 刺激!摄政王倒贴当我外室闪了腰 诸君把我当炉鼎,我把诸君当狗玩 咸鱼通房带娃跑路,世子疯魔了 双生之嫡姐不好惹 爱妃到底有几个马甲 穿到荒年,靠捡破烂和糙发家致富 王爷不好了:王妃又惹祸了 闺蜜齐穿古代当外室?你跑我也跑 没想到你居然是个颜控 醉青梅 我的权臣小叔子 闲鱼当不成,带着全家卷到飞 
离语 semaphore - 离语txt下载 - 离语最新章节 - 离语全文阅读 - 好看的古言小说